Eigenvalues and Isomorphism

Riley Moriss

August 11, 2025

The moral of the story is this: Eigenvalues/vectors are about *stable subspaces* while kernel and image (invertibility) are about *permuting and scaling subspaces*.

For these notes we will consider matrices over the complex numbers.

Lemma. All eigenvalues are non-zero iff the matrix is invertible.

Proof. Put the matrix in JNF, the eigenvalues are the diagonal entries. The JNF is uppertriangular and hence its determinant is just the product of the eigenvalues. Hence the matrix has a non-zero determinant (invertible) iff all its eigenvalues are non-zero.

Lemma. We have an inclusion eigenspaces for eigenvalues $\neq 0 \subseteq \text{Im}(f)$ where f is some linear transformation $V \to V$.

Proof. This is clear since if φ is an eigenvector for eigenvalue λ then $f(\frac{1}{\lambda}\varphi) = v$. I also want to give an example where this inclusion is strict. Consider a non-trivial Jordan block

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

then the only eigenvalue is 1 and the eigenspace is elements of the form (a,0) but this map is surjective, in other words full rank. Hence eigenspace \subset Im. This is a general feature of such Jordan blocks, as they appear when the eigenspace is a lower dimension that the eigenvalues multiplicity.

Lemma. We have an equality ker(f) = eigenspace of eigenvalue 0.

Proof. f(X) = 0X = 0 iff X is an eigenvector for eigenvalue 0.

This gives the decomposition of V into

 $V = \ker A \oplus \operatorname{Im} A = 0$ -eigenspace \oplus non-zero-eigenspace \oplus Jordan blocks

or alternitively we can see that

 $\operatorname{Im} A \cong \text{non-zero-eigenspace}$ with multiplicity

Although this is an isomorphism now and no longer equality.